

Points traités dans la présentation

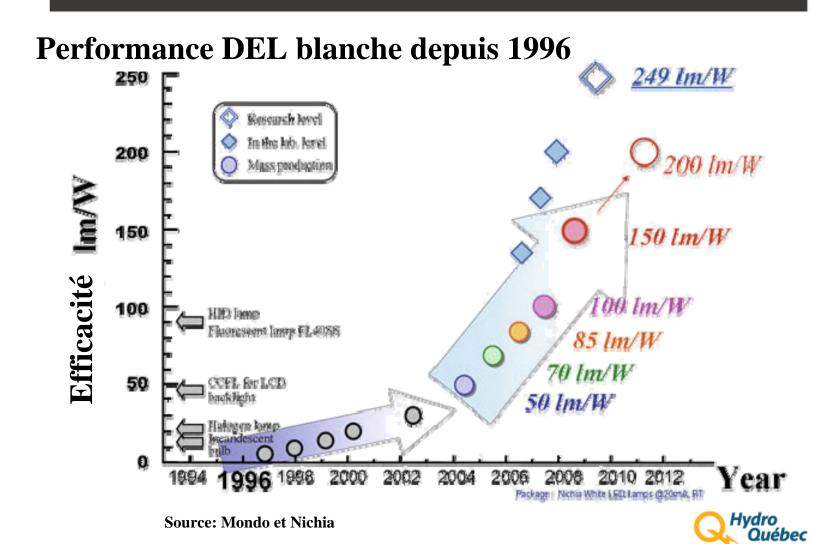
- Qu'est-ce qu'un DEL ?,
- État de l'art des DELs,
- Performance des luminaires DELs,
- Où placer les DELs aujourd'hui?,
- Quelques exemples,
- Recommandations générales.

Qu'est-ce qu'un DEL?

- Semi-conducteur, sensible à la chaleur
 - Incandescent -> évacuation de la chaleur par infrarouge
 - 60W
 - 80% IR (48W)
 - 10% Conduction (6W)
 - 10% Lumière (6W)
 - DEL -> pas d'infrarouge -> évacuation de la chaleur par conduction beaucoup plus difficile
 - 20W
 - 0% IR
 - 70% Conduction (14W)
 - 30% Lumière (6W)
- Jonction P-n,
 - Le déplacement d'électron produit, soit des photons, soit de la chaleur. Le plus gros défi d'efficacité est là!

Qu'est-ce qu'un DEL?

- Types de DELs:
 - DEL faible puissance: simple fiche avec diode. Pour rétro éclairage seulement.
 - DEL haute puissance: dépôt sur substrat.
 - ODEL: plastic dopé (développement).
- Comment générer la lumière blanche ?
 - DEL bleu et UV + phosphore jaune.
 - Par combinaison de plusieurs couleurs (RGB, téléviseur).
 - ODEL blanc.
- À court terme, c'est les DEL bleu avec phosphore qui va percer le marché de l'éclairage.


État de l'art des DELs

- Performance des DELs dans le temps,
- Évolution des coûts dans le temps,
- Freins à l'adoption de la technologie:
 - Coût,
 - Performance,
 - Variabilité d'un produit à l'autre
 - Maintient de la performance:
 - Intensité lumineuse,
 - · Température de couleur (chaud vs. froid),
 - · Rendu de couleur.

Efficacité des DELs

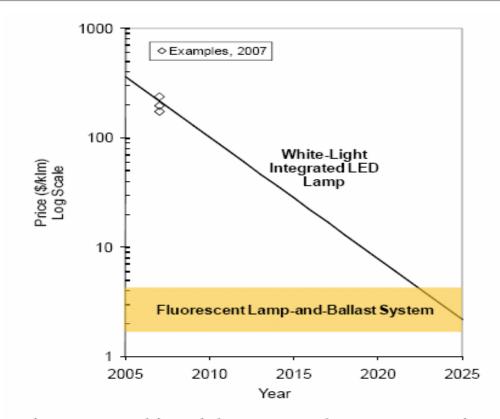


Figure 4.9: White-Light Integrated LED Lamp Price Projection (Logarithmic Scale)

Note: Assumes 2008 prices for fluorescent price range (13 W self-ballasted compact fluorescent lamp at bottom, and 2-lamp 32 W T8 linear fluorescent lamp-and-ballast system at top).

Source: LED Technical Committee, Fall 2008

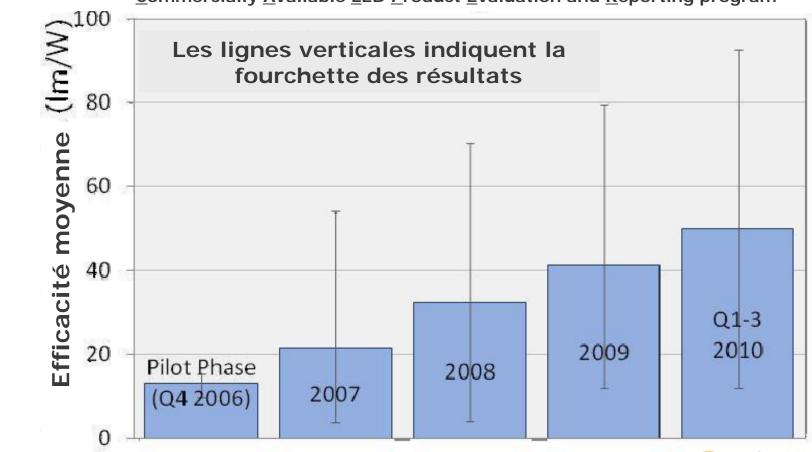
Performance des luminaires DELs

MYTHE OU RÉALITÉ ??

- Beaucoup d'informations véhiculées, dont certaines fausses ou non vérifiées;
- Besoin de valider la performance des produits;

MYTHE ET RÉALITÉ!!

Voir résultats de tests qui suivent:



Performance des luminaires DELs - CALiPER

Résultats CALiPER

Commercially Available LED Product Evaluation and Reporting program

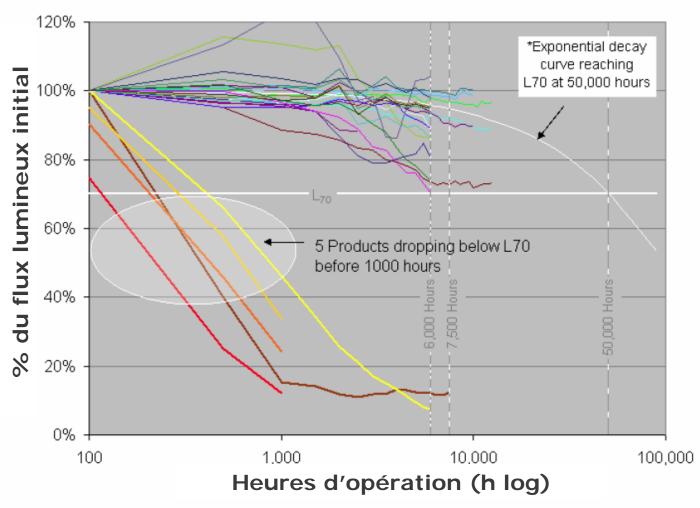
Valeurs publiées vs tests

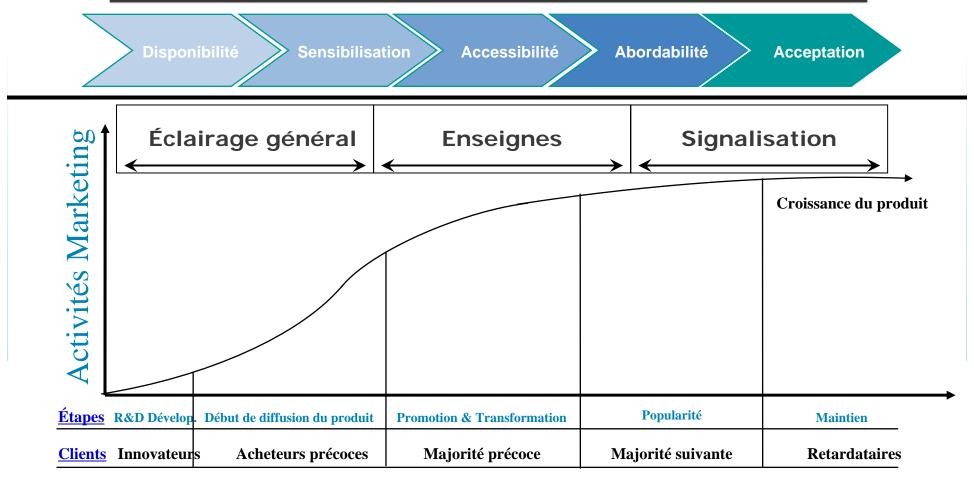
Table 5. CALiPER ROUND 11 - PAR38 and AR111 Replacement Lamp Manufacturer Claims

Sample	Performance Level and	Meeting Manufacturer	Meeting Lamp	Lighting Facts	Comments
09-112 PAR30	(No equivalency claims.) Meets ~50W halogen equivalence.	Meets or exceeds manufacturer claims.	Not standard or diameter length for short or long PAR30.	None.	D _{uv} (color quality) exceeds ANSI tolerance and has low CRI (64).
10-04 PAR38	Claims 50-90W halogen equivalence, meets 50-55W, not 90W halogen equivalence.	Meets or exceeds manufacturer claims.	√	✓	
10-11 PAR38	Claims 75W halogen equivalence, meets 65-70W halogen equivalence.	X Overstates performance by 15- 20%	➤ Slightly exceeds max overall length.	Meets CCT and CRI, but not light output and efficacy.	Adjustable power product (3 wattage levels), tested at highest power setting. Somewhat overstates performance.
10-29 PAR38	No equivalency claims. Meets ~85W halogen equivalence.	Meets light output and efficacy, but incorrect CCT (labeled 2700K, measured 4056K)*	➤ Slightly too short neck + skirt length.	Meets light output and efficacy, but has incorrect CCT*	"Added weight of the device may cause instability of a free-standing portable lamp." (Heavy.)
BK09-111 PAR38	Compares to 60W HIR and 90W standard halogen.	✓	✓	Not applicable.	Ceramic Metal Halide with integrated ballast

11

CALIPER – dégradation du flux lumineux




Figure 11. Long-term Lumen Depreciation for 26 CALiPER Fixtures and Replacement Lamps, ec

Source: DOE

Based on Spot Illuminance Measurements

Étapes de transformation des produits

Positionnement global de la technologie DEL.

Où placer les DEL aujourd'hui pour l'éclairage général?

Éclairage extérieur:

- Pas d'effets croisés,
- Forte compatibilité avec les caractéristiques de DELs:
 - Bas niveaux d'éclairement,
 - Directionnalité importante,
 - Variabilité de la couleur moins critique,
 - Basses températures,
- Frais d'entretien élevés.

Éclairage intérieur:

- Applications niches où:
 - La directionnalité des DELs est mise à profit (ex. PAR 38).
 - Les effets croisés sont avantageux (ex. congélateurs).
 - La technologie de référence est l'incandescent, donc peu efficace.

Luminaires encastrés - recommandations

- Les luminaires encastrés aux DELs approuvés Energy Star sont commercialement disponibles.
 Ils sont beaucoup plus efficaces que les luminaires incandescents et équivalents aux fluorescents.
- Problèmes de dissipation de chaleur, limitant la puissance et le flux lumineux.
- Incertitude sur la variabilité de la couleur, dans le temps et entre les différents lots de production.

Recommandations:

- Comme il reste des incertitudes sur la performance à court et long terme, il est proposé d'accepter seulement les luminaires Energy Star dans nos programmes.
- Un projet pilote serait souhaitable afin de valider la performance à long terme de ces luminaires (dégradation lumineuse, changement de couleur).

Lampes directionnelle - recommandations

- Application compatible avec la directionnalité des DELs.
- Sans rejeter les lampes de remplacement, on devrait favoriser les luminaires, qui sont plus performants.
- Le format des lampes pose un problème de dissipation de chaleur, limitant ainsi la puissance et le flux lumineux.

Recommandations:

- Comme le surcoût reste élevé et que la disponibilité des produits performants est limitée, il est proposé de promouvoir les lampes qui rencontrent les critères Energy Star seulement.
- Introduire dans le programme prescriptif quand le coût aura diminué et que les produits performants seront disponibles.

Lampes omnidirectionnelle - recommandations

- Application peu compatible avec la directionnalité des DELs.
- Le format des lampes pose un problème de dissipation de chaleur, limitant ainsi la puissance et le flux lumineux.
- Le concours L-Prize: prix de 10M\$ US pour une lampe de remplacement DEL de 90 lm/W, compatible avec les gradateurs.

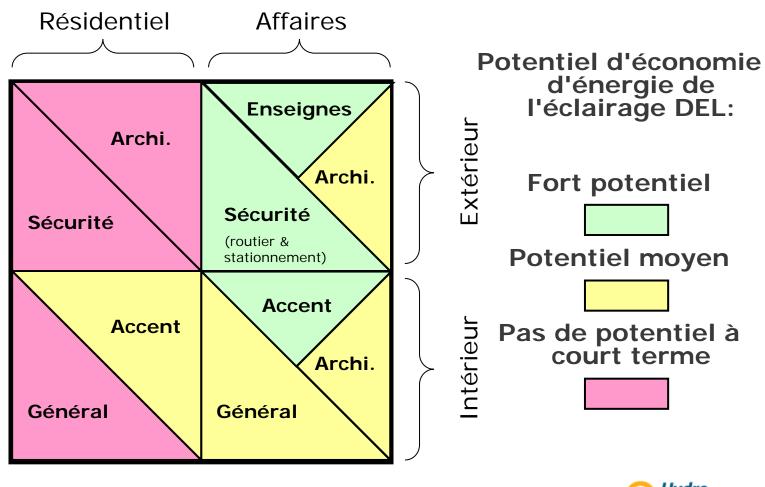
Recommandations:

- Continuer à faire une vigie active.
- Introduire la technologie DEL une fois que son coût aura diminué et que la performance surpassera celle des lampes fluocompactes.

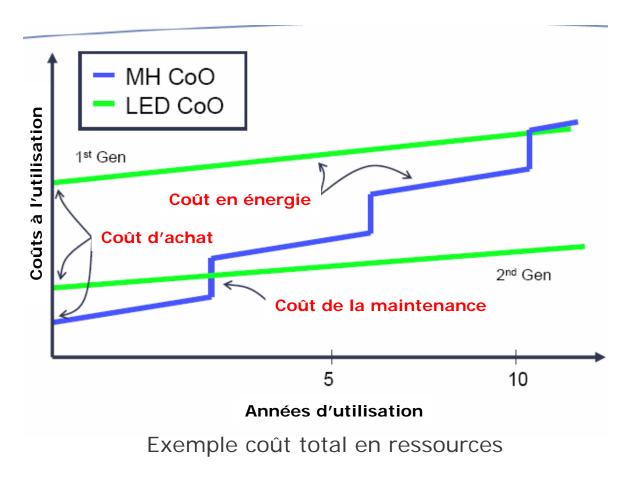
Admissibilité aux programmes d'appui financier

Mesures déjà reconnues:

- Éclairage extérieur commercial et industriel
- Éclairage de zones réfrigérées


Mesures faisant l'objet de vigie active:

- Éclairage routier
- Éclairage intérieur général pour haut plafond
- Éclairage intérieur général
- Éclairage intérieur d'accentuation



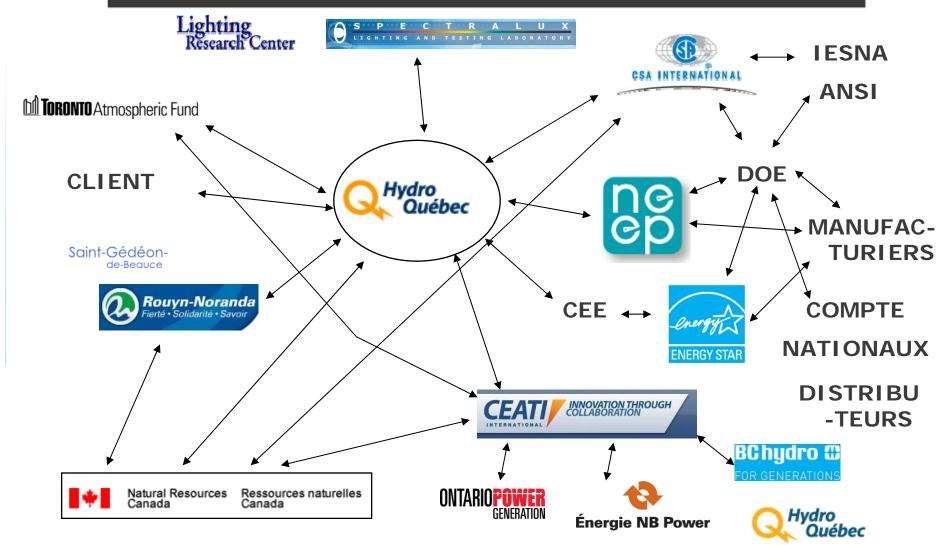
Potentiel du DEL en efficacité énergétique

\rightarrow

Quand passer aux DELs?

1st Gen BetaLED

2nd Gen BetaLED



Source: présentation CREE, 24 juin, séminaire du DOE.

Activités de HQD sur l'éclairage DEL

\rightarrow

Quelques exemples – Lumières d'accent

Source: www.bridgelux.com

Quelques exemples – Lumières d'accent

800 Lumen Series

Part Number (1)	ССТ	CRI	Beam Angle (FWHM)	Forward inal Efficacy Mais attention ne tient
180081-22x0	3000K	82	24°, 32°	pas compte des pertes du « driver » et
180081-42x0	4100K	80	24°, 32° and 5	requiert un contrôle serré de la température 64

1200 Lumen Series

Part Number (1)	ССТ	CRI	Beam Angle (FWHM)	Forward Current (mA)	Hot Lumens (2) (T _c 60°C)	Voltage ⁽³⁾ (T _c 60°C) (V)	Nominal Wat (T _c 60°C) (W)	ominal Efficacy (T _c 60°C) (lm/W)
	3000K	82	24°, 32° and 50°	700	730	17.2	12.0	61
180081-23x0				1050	1040	17.9	18.8	56
				1400	1330	18.5	25.8	51
	4100K	80	24°, 32° and 50°	700	840	17.2	12.0	70
180081-43x0				1050	1200	17.9	18.8	64
				1400	1530	18.5	25.8	59

Pour remplacer:

GE MR16	3200K	>90		475	12.0	35.0	13.6

Quelques exemples – L'Hôtel WIT à Chicago

- Ouverture mai 2009
- 27 étages
- 90 différents types de luminaires
- 20 différents types de lampes
- Trop couteux de faire l'ensemble de l'éclairage au DEL
- Combinaison d'éclairage traditionnel et DEL aux endroits les plus bénéfiques
- Exemple Alcôves:
 - 4 soumissions de produits DEL pour alcôves reçues
 - Une seule rencontrant l'ensemble des besoins du client
- L'ensemble du projet amène des économies de l'ordre de 30% par rapport à un édifice équivalent (éclairage + autres mesures).

Quelques exemples – L'Hôtel WIT à Chicago

Résultats:

Hotel: 1,1 W/pi²

Restaurants: 1,8 W/pi²

Recommandations générales

Les avantages:

- Longue durée de vie
- Efficacité
- Robustesse
- Flexibilité
- « Directionnabilité »

Les inconvénients:

- Coûts élevés
- Manque de fiabilité
- Manque d'homogénéité
- Manque de maturité
- Manque de standardisation
- « Directionnabilité »

Recommandations générales

Approche intégrée: le DEL doit faire partie d'un offre de solutions qui inclut les technologies traditionnelles comme les sources, ballasts et luminaires efficaces ainsi que les contrôles.

Standardisation: HQ s'implique dans les organismes qui réévaluent les pratiques en éclairage en regard du DEL (ex. IESNA pour l'éclairage routier).

Supporter nos clients: essais pilotes afin de mieux définir les enjeux liés à cette technologie et préciser les coûts/économies.

Critères de performance/liste de produits: utiliser les critères en place (ex. Energy Star, NEEP) dans le mesure du possible et exiger l'utilisation de méthodes de mesures approuvées (LM-79, LM-80 et d'autres à venir...)

Introduction dans nos programmes: rendre nos programmes plus flexibles à l'introduction de produits qui démontrent leur efficacité et leur longévité.

LA recommandation: Soyez visionnaires ET vigilants!

\rightarrow

Des questions ??

