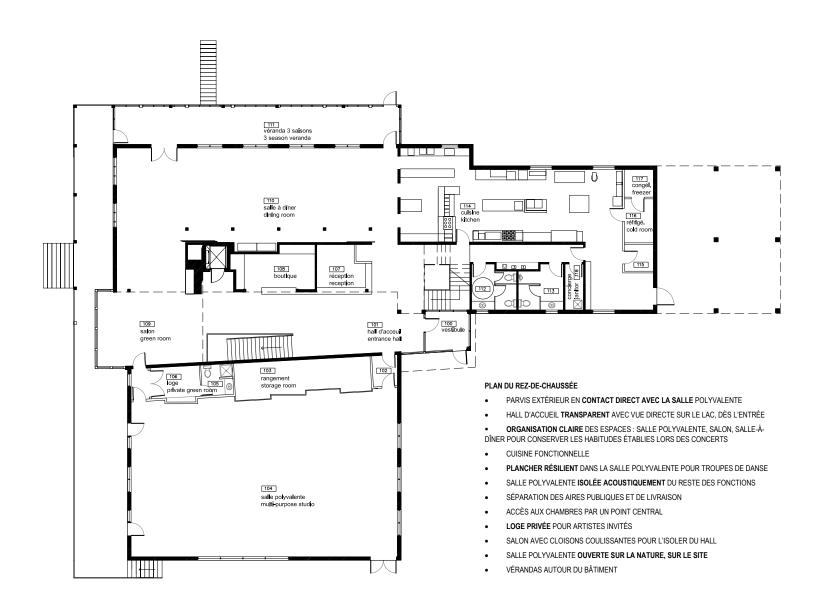
CAMMAC

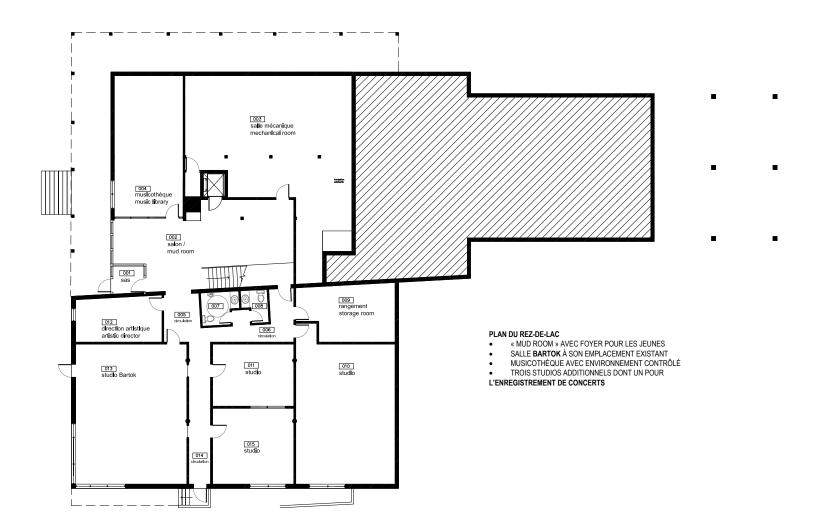
RECONSTRUCTION DU PAVILLON PRINCIPAL
DU LAC MAC DONALD

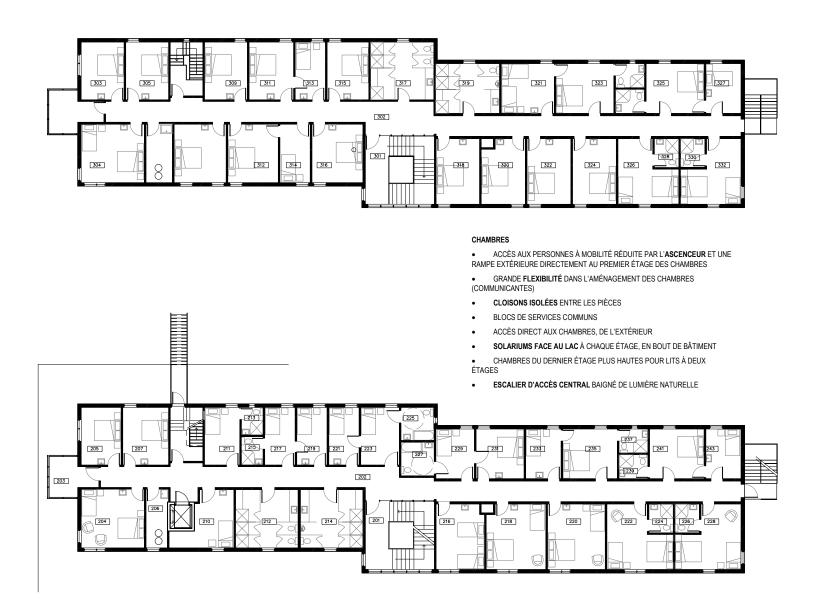
Martin Roy et

Martin Roy et Associés ASHRAE décembre 2006

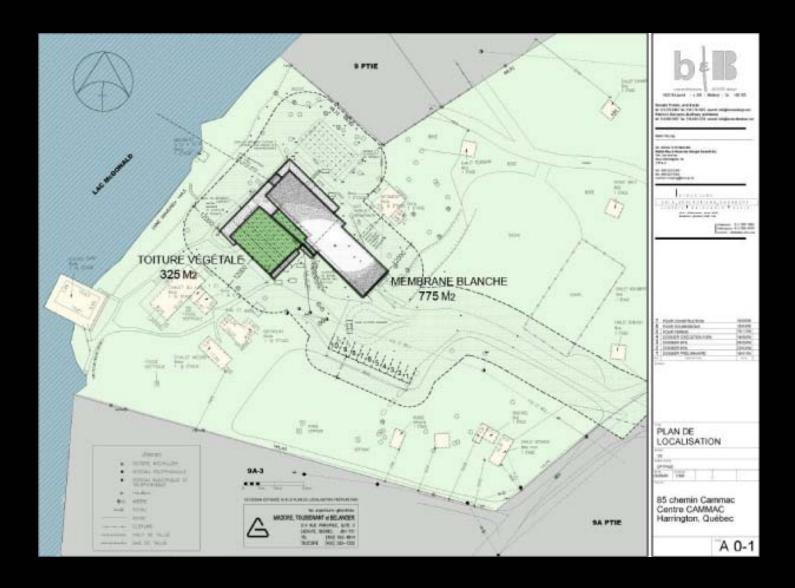
CANADIAN AMATEUR MUSICIANS MUSICIENS AMATEURS DU CANADA







Martin Roy et Associés ASHRAE décembre 2006


DÉVELOPPEMENT DURABLE

« un développement qui répond au besoin du présent sans compromettre la capacité des générations futures à répondre aux leurs »

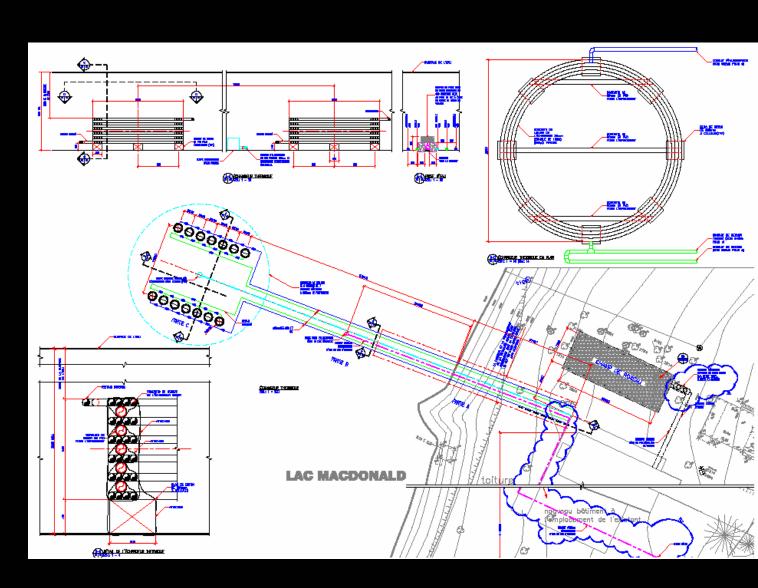
Les 3 R appliqués à Cammac

- Réutiliser l'énergie renouvelable (solaire passif, géothermie)
- Réduire les besoins énergétiques (conception)
 Réduction de 67%
- Réduire la consommation d'eau et les rejets (conception) Réduction de 40%
- Recycler les matériaux et équipements (réservoirs, pompes, équipements de plomberie, etc...)
- Réacheminement de 85% des déchets de démolition

LE SITE

MATÉRIAUX ET RÉCUPÉRATION

Martin Roy et Associés ASHRAE décembre 2006



Energie Géothermie

- 14 Boucles
- 2 Mètres sous l'eau
- Retour inversé
- Chauffeeau à l'huile

Chauffage

- Plancher Radiant
- Convection

Martin Roy et Associés ASHRAE décembre 2006

Résultats des calculs et de la cible d'énergie du bâtiment

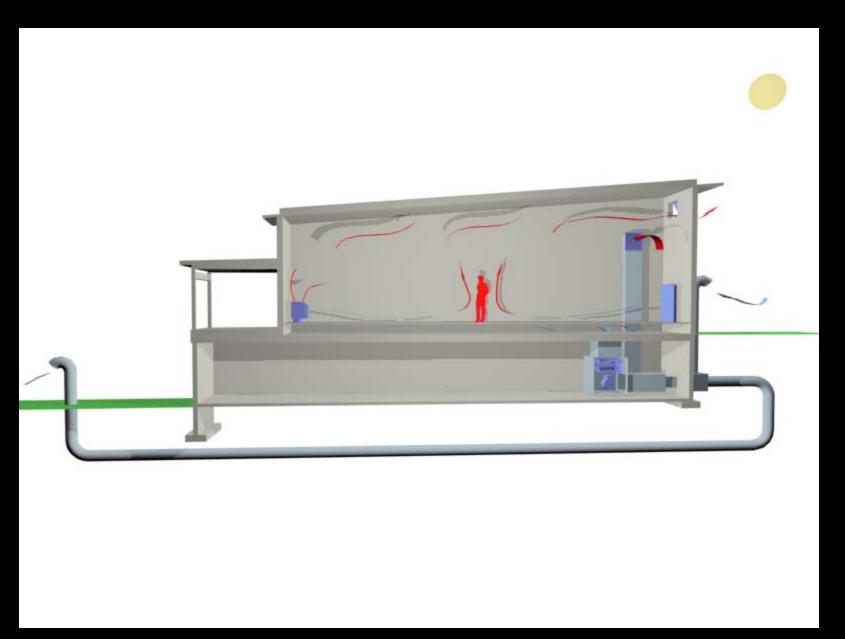
Le tableau 2 présente le sommaire de la consommation énergétique annuelle pour l'édifice. Basé sur ces données, le bâtiment surpasse le bâtiment de référence CMNÉB de **68,2** %. Pour les coûts, nous avons utilisé les résultats fournis par les rapports ES-D de DOE. Note le tableau 2 inclut les économies liées aux calculs manuels, dont les détails sont présentés en annexe.

Tableau 2 – Sommaire de consommation énergétique annuelle

	Électricité (MJ)	Propane (MJ)	Mazout (MJ)	Total (MJ)	Total (MJ/m2)	Coût	Coût/m2
Proposé	402 238	95 624	133 348	631 210	315	12 900 \$	6.44 \$
Référence	1 626 914	0	356 544	1 983 458	991	39 124 \$	19.54 \$
Économies	1 224 676	-95 624	223 196	1 352 248	675	26 224 \$	13.10 \$

Subvention

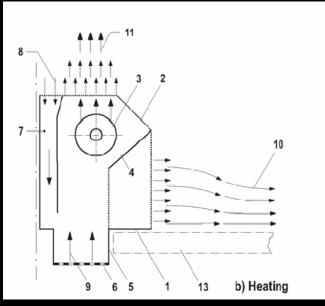
- PEBC: 52,448 \$

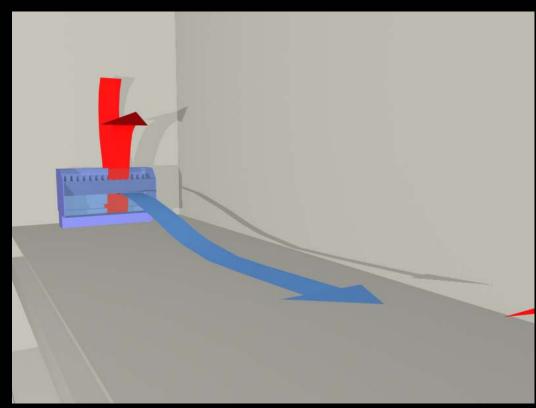

- Hydro-Québec: 125,000 \$

- PRI: nul

Ventilation

- VentilationNaturelle/hybride
- Ventilation par déplacement
- Conduit souterrain (géothermie passive)




- Plancher plénum résiliant
- Réduction de la quantité de conduits


Diffuseur par déplacement

Logiciel de simulation horaire pour géothermie passive

10/12/06 9:46 PM MATLAB Command Window Page 1

ANALYSE DE GÉOTHERMIE PASSIVE

HYPOTESES:

- -Température constance a travers la section du conduit
- -Écoulement turbulent et vitesse constante

Longueur du conduit: 60 m Dimetre du conduit: 0.8 m Débit d air: 1417 L/s

Rendement en refroidissement: 1 Rendement en chauffage: 1 Cout du KWh : 0.07 (\$/KWh)

Température de consigne du batiment: 22 deg C

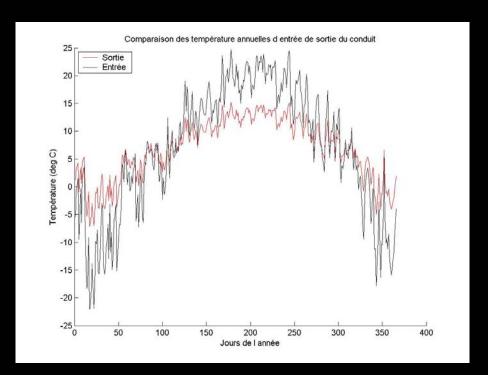
Horaire de chauffage et refroidissement: de 6:00h a 20:00h

Delta T maximal (par heure): 16.5166 deg C

Tableau global des températures

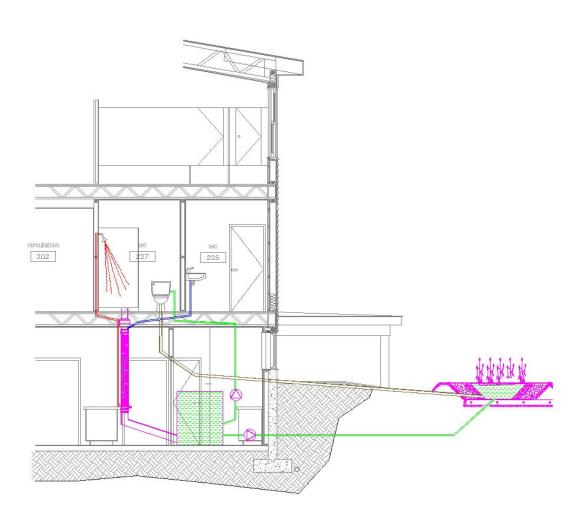
	Augm	/ Dim /	T du sol	/ Écon chauff	/ Écon ref
	(deg C)	(deg C)	(deg C)	(KWh)	(KWh)
janvier	8.6	0.0	7.0	7155.8	0.0
fevrier	7.0	0.0	7.0	5294.6	0.0
mars	3.1	0.5	7.0	2170.3	0.0
avril	1.8	1.0	7.0	1028.5	1.0
mai	0.2	3.7	7.0	25.7	281.6
juin	0.0	5.7	7.0	1.5	1447.5
juillet	0.0	7.1	7.0	0.0	2991.0
aout	0.0	7.0	7.0	0.0	2903.2
septembre	0.3	4.4	7.0	68.5	904.9
octobre	0.8	2.0	7.0	419.6	42.7
novembre	2.5	0.4	7.0	1702.8	0.0
decembre	8.3	0.0	7.0	6770.1	0.0

Énergie de chauffage founie par le conduit: 24637.38 (KWh)

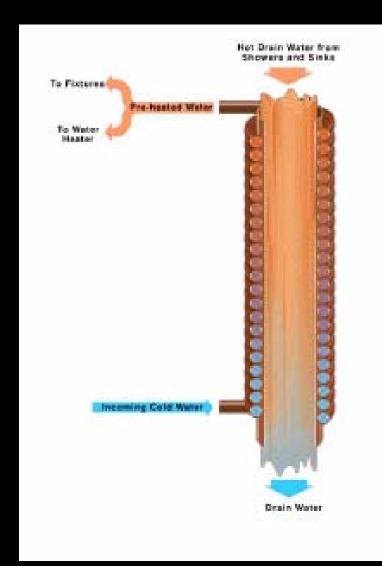

Énergie de refroidissement founie par le conduit: 8570.72 (KWh) Énergie totale fournie par le conduit: 33208.10 (KWh)

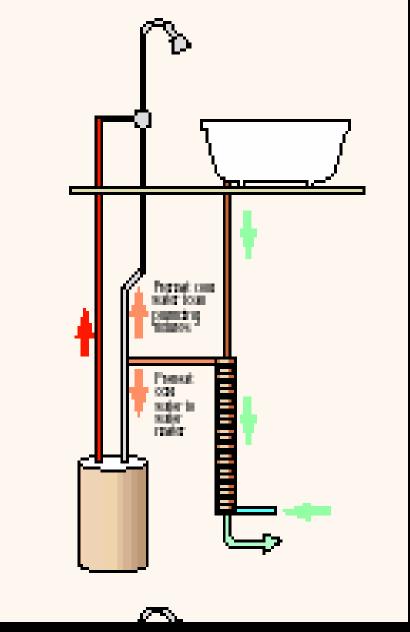
Économie annuelle réelle en chauffage: 24637.38 (KWh) Économie annuelle réelle en refroidissement: 8570.72 (KWh)

Économie totale réelle : 33208.10 (KWh)


Économie monétaires: 2324.57 (\$)

>> clc




Consommation d'eau et rejet

- Alimentation d'eau potable : lac Mac Donald
- Récupération des eaux de pluies et des eaux grises
 - Réduction de 40% de la consommation
- Utilisation d'équipement à faible consommation
 - Réduction supplémentaire de 20%
- Récupération de la chaleur des eaux grises
 - Économie d'énergie

Power Pipe

Martin Roy et Associés ASHRAE décembre 2006

Roseaux

Martin Roy et Associés ASHRAE décembre 2006

Électricité

- Éclairage naturel
 - Solera
- Éclairage efficace
 - Halogénure métallique
 - Fluorescent compact
 - Contrôle photosensible et de présence
- Entrée unique
 - Réduction des coûts électrique 1000 \$/an

Solera

Leed

Classification LEED visée (2004-09-09)

Reconstruction du Pavillon principal de CAMMAC

Yes ? No	Sal Us		Harrington, Qc.
11	Sustai	nable Sites	14 Points
	Prereg 1	Erosion & Sedimentation Control	Required
V	•	Riparian-Wetland Protection	Required
1	Credit 1	•	1
-	Credit 2		1
	Credit 3	20 to top. no. it 20 no. ty	1
		Alternative Transportation, Public Transportation Access	1
1		Alternative Transportation, Bicycle Storage & Changing Room	ns 1
1		Alternative Transportation, Alternative Fuel Vehicles	1
1		Alternative Transportation, Parking Capacity	1
1		Reduced Site Disturbance, Protect or Restore Open Space	1
1		Reduced Site Disturbance, Development Footprint	1
1		Stormwater Management, Rate and Quantity	1
1		Stormwater Management, Treatment	1
1		Heat Island Effect. Non-Roof	1
1	Credit 7.2	Heat Island Effect, Roof	1
1	Credit 8		1
Yes ? No		•	
5	Water	Efficiency	5 Points
1	Orodit 1.1	Water Efficient Landscaping, Reduce by 50%	1
1		Water Efficient Landscaping, No Potable Use or No Irrigation	1
1	Credit 2	. 3	1
1		Water Use Reduction, 20% Reduction	1
1		Water Use Reduction, 30% Reduction	1
Yes ? No	Credit 3.2	valer use reduction, 50% reduction	
	_	0.04	45 Dainte
14	Energ	y & Atmosphere	17 Points
Y	Prereq 1	Fundamental Building Systems Commissioning	Required
Y	Prereq 2	Minimum Energy Performance	Required
Y	Prereq 3	CFC Reduction in HVAC&R Equipment	Required
10	Credit 1	Optimize Energy Performance	1 to 10
1	Credit 2.1	Renewable Energy, 5%	1
1	Credit 2.2	Renewable Energy, 10%	1
1	Credit 2.3	Renewable Energy, 20%	1
	Credit 3	Best Practice Commissioning	1
	Credit 4	Elimination of HCFCs and Halons	1
1	Credit 5	Measurement & Verification	1
	Credit 6	Green Power	1
Yes ? No			

5	Materials & Resources	13 Points
Υ	Prereq 1 Storage & Collection of Recyclables	Required
	Oredit 1.1 Building Reuse, Maintain 75% of Existing Walls, Floors and Roof	1
	Oredit 1.2 Building Reuse, Maintain 95% of Existing Walls, Floors and Roof	1
	Oredit 1.3 Building Reuse, Maintain 95% shell and 50% non-shell	1
1	Credit 2.1 Construction Waste Management, Divert 50%	1
1	Credit 2.2 Construction Waste Management, Divert 75%	1
1	Credit 3.1 Resource Reuse, Specify 5%	1
	Oredit 3.2 Resource Reuse, Specify 10%	1
1	Oredit 4.1 Recycled Content , Specify 5% (post-consumer + ½ post-industrial)	1
	Oredit 4.2 Recycled Content , Specify 10% (post-consumer + ½ post-industrial)	1
1	Oredit 5.1 Local/Regional Materials, 20% Manufactured Regionally	1
	Oredit 5.2 Local/Regional Materials, of 20% Above, 50% Extracted Regionally	1
	Oredit 6 Rapidly Renewable Materials	1
	Oredit 7 Certified Wood	1
Yes ? No		
14	Indoor Environmental Quality	15 Points
Υ	Prereq1 Minimum IAQ Performance	Required
Υ	Prereq 2 Environmental Tobacco Smoke (ETS) Control	Required
1	Oredit 1 Carbon Dioxide (CO ₂) Monitoring	1
1	Oredit 2 Increase Ventilation Effectiveness	1
1	Credit 3.1 Construction IAQ Management Plan, During Construction	1
1	Credit 3.2 Construction IAQ Management Plan, Flushout/Testing	1
1	Credit 4.1 Low-Emitting Materials, Adhesives & Sealants	1
1	Credit 4.2 Low-Emitting Materials, Paints	1
1	Oredit 4.3 Low-Emitting Materials, Carpets	1
	Oredit 4.4 Low-Emitting Materials, Composite Wood	1
1	Oredit 5 Indoor Chemical & Pollutant Source Control	1
1	Oredit 6.1 Controllability of Systems, Perimeter	1
1	Oredit 6.2 Controllability of Systems, Non-Perimeter	1
1	Credit 7.1 Thermal Comfort, Comply with ASHRAE 55-1992	1
1	Credit 7.2 Thermal Comfort, Permanent Monitoring System	1
1	Credit 8.1 Daylight & Views, Daylight 75% of Spaces	1
1	Oredit 8.2 Daylight & Views, Views for 90% of Spaces	1
Yes ? No	Innovation & Decian Process	5 Points
	Innovation & Design Process	31 Onls
1	Credit 1.1 Innovation in Design: Géothermie avec l'eau du lac McDonald	1
1	Credit 1.2 Innovation in Design: Conduit sous-terrain pour l'apport d'air frais	1
1	Credit 1.3 Innovation in Design: Récupération des eaux grises	1
	Credit 1.4 Innovation in Design: Provide Specific Title	1
1	Credit 2 LEED™ Accredited Professional	1
Yes ? No		
49	Project Totals (pre-certification estimates)	69 Points

Certified 26-32 points Silver 33-38 points Gold 39-51 points Platinum 52-69 points

Conception intégrée

- Box architecture/Bosses Design
- PHD architecte
- SDKLBB ingénieur en structure
- Martin Roy et associés ingénieurs mécanique et électrique
- Filtre Aqua
- Roseaux épurateurs
- Génivar construction
- CAMMAC

