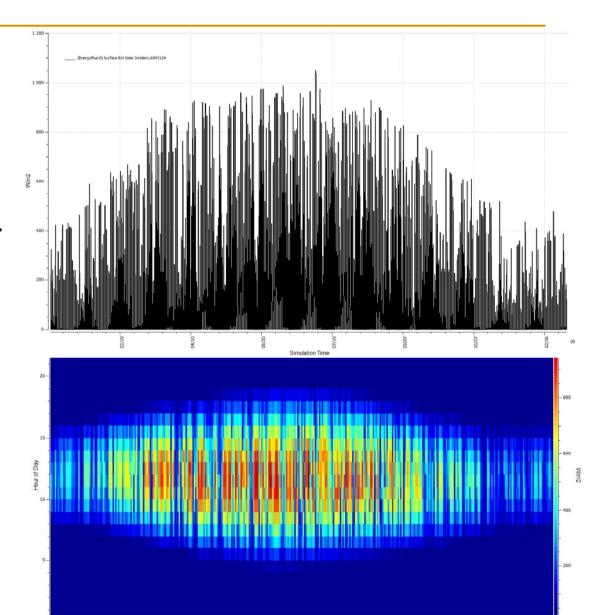
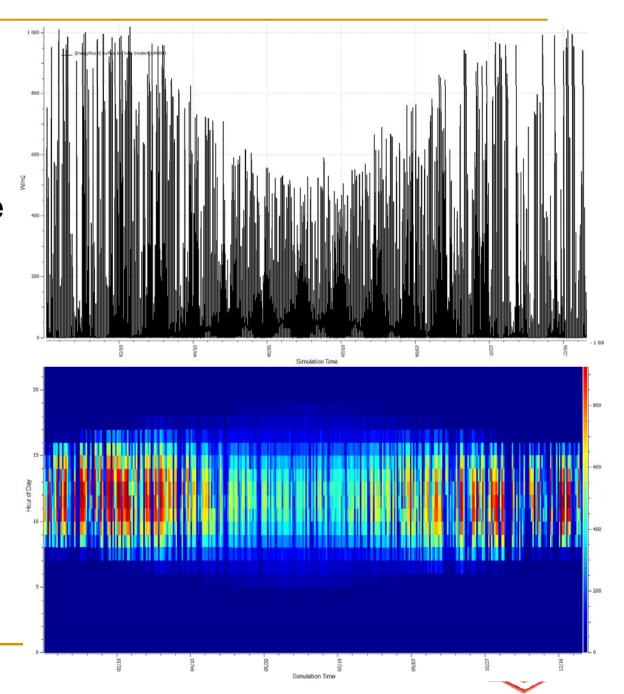

Rendez-vous programme Bâtiments ASHRAE Montréal

Martin Roy, ing. LEED AP 12 décembre 2011

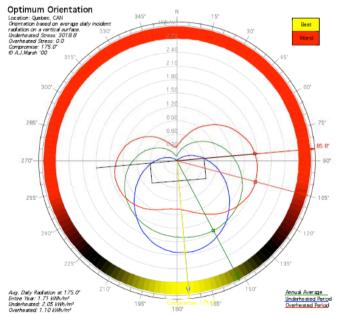
Soleil


- Option Solaire dans le Bâtiment au Québec
 - Solaire Passif
 - Solaire thermique
 - Solaire PV
- Outil de simulation
 - Comfen
 - SolOpt
- Thermopompe assisté de l'énergie solaire

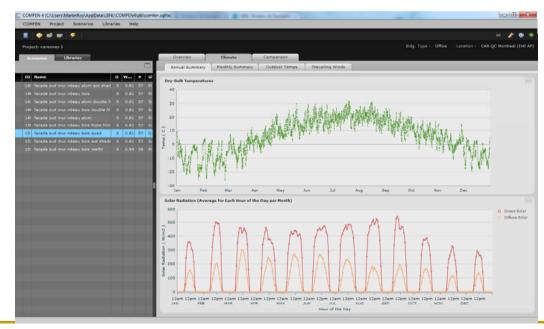

Solaire Passif

- Énergie solaire sur une surface horizontal
- Energy + weather file Montreal

Solaire Passif


- Radiation sur une surface verticale
- Jusqu'à 1 kW/M2

Solaire Passif


- Favoriser l'orientation pour le captage solaire
- Emmagasiner l'énergie disponible
- Outils disponible
 - Simulation de bâtiment (EE4, DOE2, Equest, Energy +, TRNSYS, etc.
 - Restcreen
 - Comfen

Comfen 4.0

- Outil de comparaison de façades
- Moteur Energy +
- Inclus Radiance
- Intègre Window 6.0 et Therm 6.0

Geometry and Materials Environment Comfen 4.0 Width: Floor Area: Lighting Control: Continuous 201 m2 Glare Control: Depth: HVAC Economizer: Temp. and Enthalpy Height: 6.25 m Project Properties Lighting Load: W/m2 Orient.: South Project Name varennes 2 Equipment Load: W/m2 3 Project Description test de facade sud Wall: Wood stud wall, varennes rsi & # people: people Name: Wood stud wall, varennes rsi 8.26 Building type Office WALL CONSTRUCTION Vintage: New Construction First layer is outside layer. (Drag material layers from right) Project North Thickness R-value ID Material Framing R-value Frame Location CAN QC Montreal (Intl AP) (mm) Cavity 86 Film coefficient, moving air, 15... ▼ 0.00 0.03 0.03 continuous Default Wall: 3. Wood stud wall, R-13 + R-7.5 c.i. (ASHRAE 90.1 - 2007: Zones 6 - 7), 2" x 4," 16" o.c. 79 Steel, mild, sheet, 1/16" ▼ 1.59 0.00 continuous 3 71 EPS, R-15.60 ▼ 99.06 2.75 2.75 continuous Wall R-Value: 21.75 ft2-F-h/Btu 36 Plywood (douglas fir), 3/4" ▼ 19.05 continuous 0.18 0.18 (ASHRAE 90.1) Wood stud (southern pine), 2"... € 234.95 1.54 framing HVAC System Packaged Single Zone Glass fiber-batt, R-30 (2" x 10... ▼ 234.95 5.43 (COMFEN currently allows only Packaged Single Zone systems,) Vapor barrier: seal, plastic film 0.00 0.00 continuous Gypsum, sand agg., 1" ▼ 25.40 0.03 0.03 continuous Calculation Period Film coefficient, still air, vertica... ▼ 0.00 0.12 0.12 continuous (COMFEN currently allows only year-long simulations.)

OK

Cancel

Wall assembly characteristics:

Assembly thickness: 380.3015

0.1210

W/m2-°K

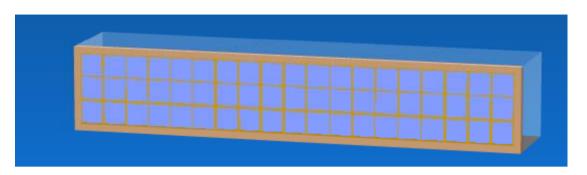
% Framing:

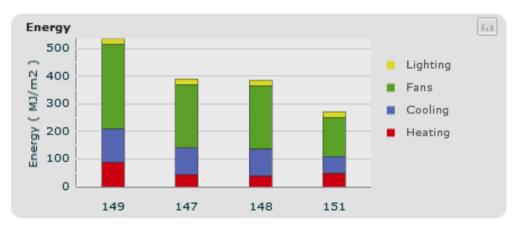
U-factor:

- Mur RSI 8.26
- Orientation 15 deg

Comfen 4.0

- Pilkington Energy Advantage argon SHGC=0.62 U=1.624
- Southwall HM TC88, SHGC 0.467 U=0.818
- Quad Solar LowE SHGC=0.292 U=0.614
- Mur rideau Alum.U=5.68
- Mur rideau bois Raico U=1.0

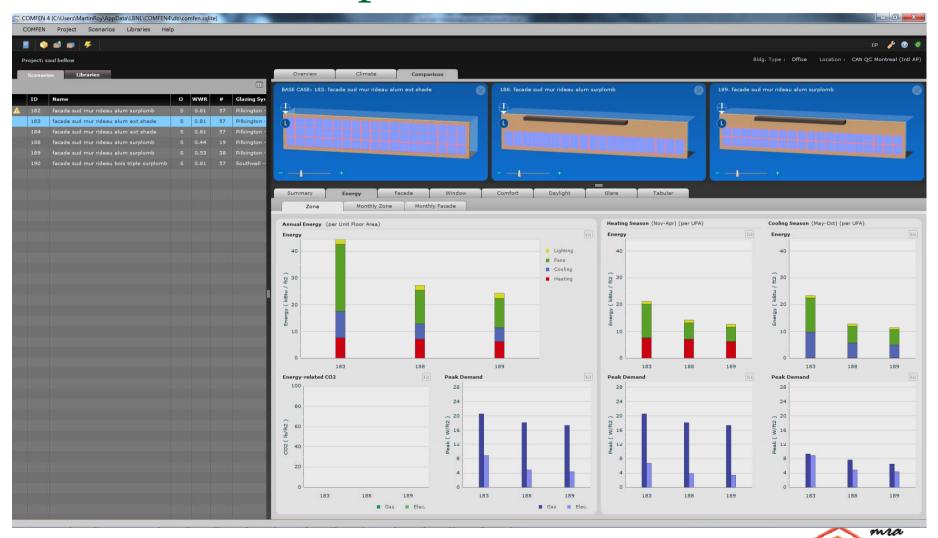




Comfen Façade sud

- Mur rideau en bois réduction de chauffage de 15%
- Fenestration TC-88 réduction de 55%
- Quad réduction de chauffage de 44%

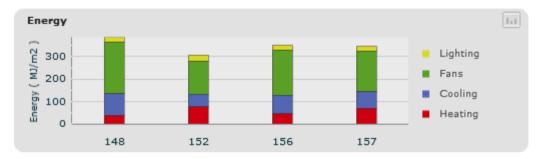
149 : cadre alu. double vitrage

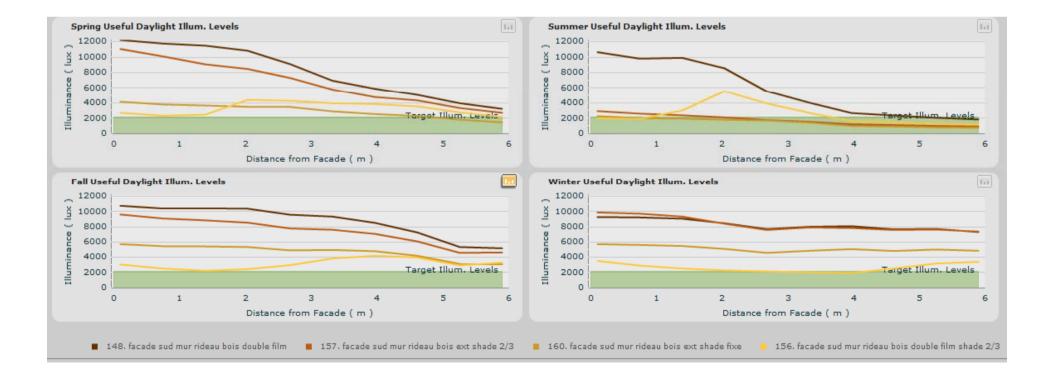

147 : cadre alu. HM TC88

148 : cadre bois HM TC88

151 : cadre bois Quad

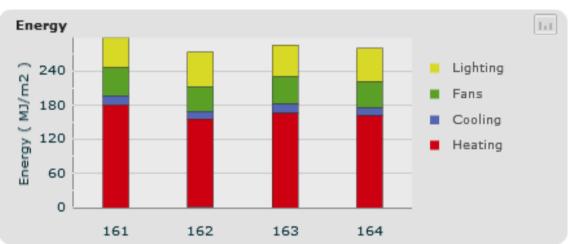
Comfen exemple

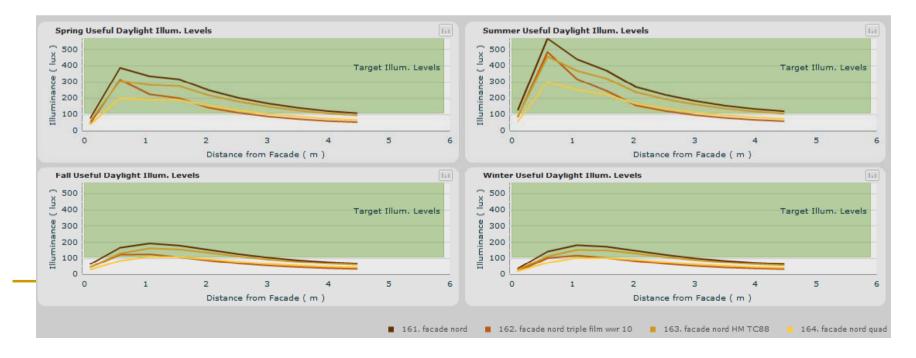



Comfen

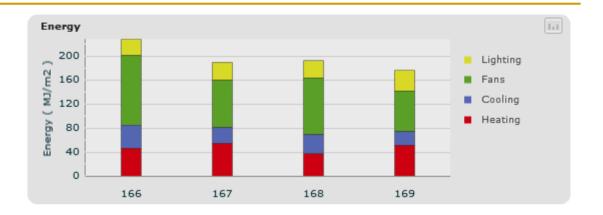
Façade sud

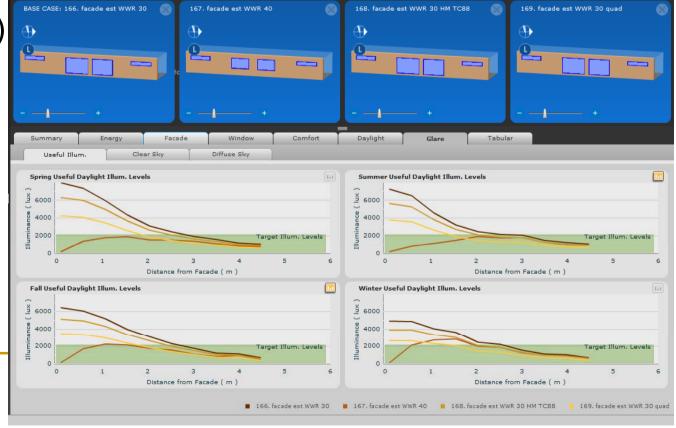
- Volets extérieurs fixes
- Volets extérieurs mobiles
- Toiles intérieures


Occultation solaire



Comfen Façades Nord


- PMV 20%
- PMV 10% (-13%)
- HM TC88 (-8%)
- Quad (-10.4%)



Comfen Façades Est

- PMV 30%
- PMV 20% (+16%)
- нм тсвв (-20%)
- Quad (+10%)

Solaire Thermique

- Technologie éprouvée
- Chauffage de l'air
 - Ventilation
 - Espace
 - Procédés
- Chauffage de l'eau
 - Eau domestique
 - Eau de chauffage
- Besoin limité

Solaire Photovoltaïque

- Réduction des coûts d'installation
- Technologie éprouvée
- Coût du kWh produit élevé
- Besoin illimité (mesurage net)

SolOpt

http://solaramericacommunities.energy.gov/resources/publications/solopt/

- Meilleur retour sur investissement
- Analyse du cycle de vie
- Coût normalisé de l'énergie le plus faible

SolOpt is a rooftop optimization and sizing tool for photovoltaic (PV) and solar hot water (SHW) systems. The program uses basic building information such as location, building type, and roof area for an hourly calculation of renewable energy production. It accommodates five optimization criteria based on financial metrics and energy performance. Step 1: Enable Macros. Click on the sun to the right, if the animation does not play, click "Options" under the formula bar and then click "Enable Content." Step 2: Select the "Optimization" tab at the bottom of the window Step 3: In the "Critical Inputs" section, enter general building information and annual Step 4: Click "Optimize System" button (sun icon on "Optimization" tab) to run simulation. Internet access is required to read information from weather files. Step 5: In the "Optimization Results" section, select desired optimization criterion from drop-down menu to view results. By clicking the "Copy Results to Output Table" button results will be saved to the "Output Table" tab. Use this feature to compare different systems Help: The grey cells are inputs and the white cells are calculated or looked-up values. Consult the "Notes" column for technical help. Explore the advanced inputs by clicking the "Show/Hide Advanced Inputs" button at the bottom of the "Optimization" tab. Peak Indicates SolOpt Simulation Results Optimal Region **PV Energy Production Plot** (units left axis) Optimization **SHW Energy** Criteria Plot **Production Plot** (units right axis) (units left axis)

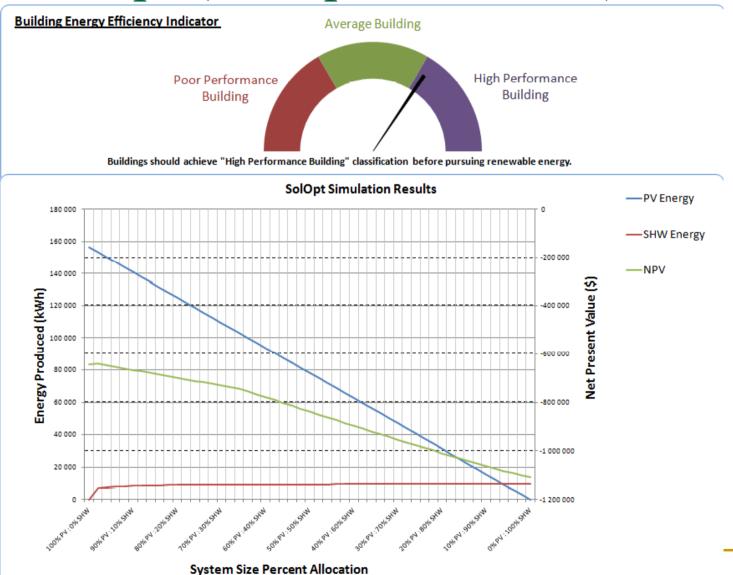
AllSHW

AllPV

SolOpt (exemple Net Zero)

SHW State (Rebate) Buvdown

- 20,000 pi2
- Toit de 13,000 pi2
- 5 kWh/pi2
- Remplir la surface disponible


Critical Inputs	Units	Value	Notes
State	-	New York	SNDFI
Nearest Weather Station	-	WATERTOWNAP	■ WINKEL
Roof-top Area	ft²	13 000	NATIONAL RENEWABLE ENERGY LABORATORY
Building Gross Square Feet	ft ²	20 000	SOLAR AMERICA
Building Tax Status	- 1	Commercial (Tax-paying)	COMMUNITIES
Building Use	- 1	Office	
Current DHW System Type	-	Natural Gas Standard Tank	
Blended Electrical Rate	\$/kWh	\$0,10	(annual cost) / (annual usage)
Blended Fossil Fuel Rate	\$/Mbtu	\$9,00	1Mbtu = 1million btu
Annual Electric Consumption	kWh/year	100 000	
Annual Fossil Fuel Consumption	Mbtu/year	800	Conversion Factors
Simulation Analysis Type	-	PV & SHW: Fill Entire Roof	
Building Energy Use Intensity (EUI)	kBtulft²	57,1	Compare EUI to other buildings with the
Average Office EUI (CBECS)	kBtulft³	92,9	Building Energy Efficiency Indicator gragh
Latitude	degrees	44	
Longitude	degrees	-76,017	
Elevation	ft	318	

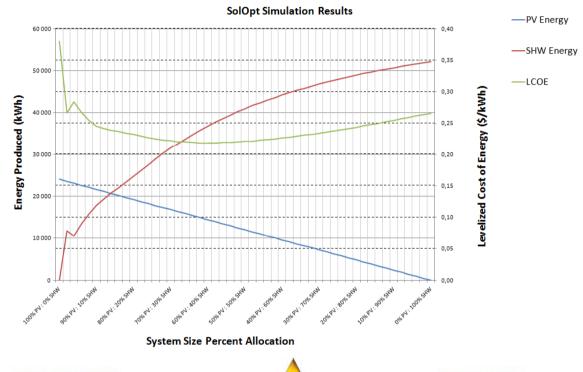
General System Characteristics		Value	
Solar Availability (Shading Derate Factor)	%	100%	100% if no shading obstructions
Mounting Surface Material	-	White Paint	
Slope of Roof/Ground	degrees	44	Typical Roof Angles
Usable Area Derate Factor	%	100%	100% if no roof-top obstructions
Total Array Tilt from Horizontal	degrees	0	≥ Roof/Ground Slope
Azimuth (East of South is Positive)	degrees	0	
Annual System Degradation	%lyear	0,50%	
Altitude Angle (Winter Equinox)	degrees	22,6	
Production Limit	kWh	100 000	Based on annual consumption
Mounting Surface Reflectance	-	0,70	
Total Solar Collector Area	Ac (m²)	1207,7	PV and SHW
CO2 Emission Factor PV	lb CO₂/ MWh	832,33	EPA eGRID Emissions Factor
CO2 Emission Factor SHW	lb CO₂/ MWh	399,01	EPA eGRID Emissions Factor

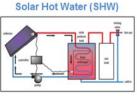
Economic Characteristics			
Net Metering Production Limit	%	100%	Percent of annual electric load
Net Metering PV Capacity Limit	kW		Leave Blank if Not Applicable
Excess Sell Back Rate	\$/kWh	\$0,00	
Project Lifetime	years	25	
Real DHW Fuel Escalation Rate		1,083%	DHW Fuel Escalation
Real Discount Rate	%	3,000%	Federal Default: 3%
Real Electricity Escalation Rate	%	0,542%	Federal Default: 0.541667%
nflation Rate	%	0,900%	Federal Default: 0.9%
First Equipment Replacement Cost	\$	\$0,00	
First Equipment Replacement Year	year	20	
Becond Equipment Replacement Cost	\$	\$0,00	
Second Equipment Replacement Year	year	40	
PV Federal Tax Incentive	%	0%	Solar Incentives
PV State Tax Incentive	%	0%	Incentives can be updated from
PV State Production Credit	\$/kWh	\$0,00	"Incentives" Tab
PV State (Rebate) Buydown	\$/k\W	\$0	
SHW Federal Tax Incentive	%	25%	
SHW State Tax Incentive	%	25%	
SHW State Production Credit	\$/kWh	\$0.00	

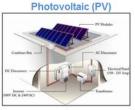
SolOpt (exemple Net Zero)

SolOpt (exemple Net Zero)

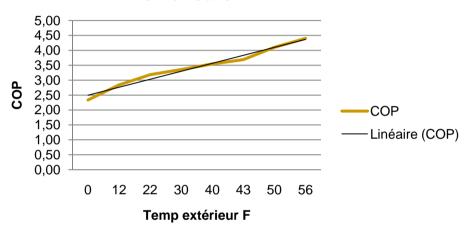
Optimization Results	Units	Value	Notes
Optimization Criterion	-	Maximize Net Present Value (NPV)	S-1
Optimal PV System Size	ft ²	12 740	Select from 5 different optimal system
Optimal PV System Capacity	kW	158,6	
PV Capacity Factor	×	11,0%	
Number of PV Panels	-	910,4	
Installed Cost PV	\$/W	\$4,85	
Optimal SHW System Size	ft ²	260	
Optimal SHW System Capacity	kW	11	SHW Capacity Rating
SHW Solar Fraction	· · ·	50,4%	
SHW Capacity Factor	×	7,3%	
Installed Cost SHW	\$/ft²	\$90,00	
Number of SHW Panels	-	8,1	
Annual System Production	kWh/yr	160 153	
Cost Savings	\$/yr	\$10 232	
Total Incentives	\$	\$10 850	
System Cost with Incentives	\$	\$800 249	
Simple Payback Period (SPP)	years	87,1	
Discounted Payback Period (DPP)	years	100,0	
Net Present Value (NPV)	\$	-\$641200	
Life Cycle Cost (LCC)	\$	\$833 331	
Cost of Business as Usual (NPV)	\$	\$192 131	Based on Utility Bills Only
Savings to Investment Ratio (SIR)	-	0,2	
Internal Rate of Return (IRR)	×	0,0%	
Levelized Cost of Energy (LCOE)	\$/kWh	\$0,311	LCOE does not include accelerate
Greenhouse Gas Reduction (GHG)	tonnes CO₂e	59	depreciation or salvage value


Show/Hide Advanced Inputs


Copy Results to Output Table

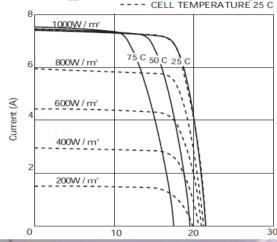

SolOpt (exemple Résidence)

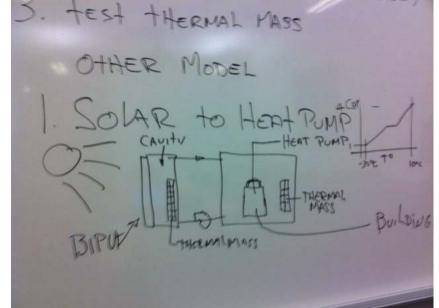
- Multi-résidentiel 10 logements 3 étages
- Chauffe-eau électrique
- Calcul selon 3 options
 - Toit complet NPV
 - Surface utilisée non définie
 - Toit complet coûts minimum de l'énergie

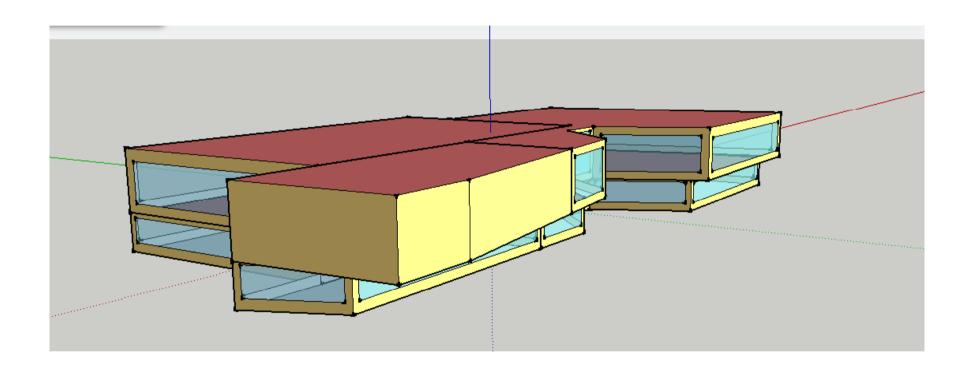


Output Table	residence1	residence2	residence3
Optimization Criteria	Maximize Net Present Value (NPV)	Maximize Net Present Value (NPV)	Minimize Levelized Cost of Energy
Optimal PV System Size	1 505	0	1 254
Optimal PV System Capacity	18,7	0,0	15,6
PV Capacity Factor	10,5%	0,0%	10,5%
Number of PV Panels	107,5	0,0	89,6
Installed Cost PV	\$5,62	\$0,00	\$5,69
Optimal SHW System Size	585	42	836
Optimal SHW System Capacity	24	2	35
SHW Solar Fraction	37,1%	14,5%	45,2%
SHW Capacity Factor	14,3%	78,0%	12,2%
Installed Cost SHW	\$90,00	\$151,07	\$90,00
Number of SHW Panels	18,3	1,3	26,1
Annual System Production	47 544	11 812	51 262
Cost Savings	\$4 754	\$1 181	\$5 126
Total Incentives	\$0	\$0	\$0
System Cost with Incentives	\$158 662	\$6 315	\$164 557
Simple Payback Period (SPP)	40,6	5,7	40,5
Discounted Payback Period (DPP)	61,4	6,1	60,5
Net Present Value (NPV)	-\$77 716	\$16 491	-\$80 089
Life Cycle Cost (LCC)	\$461 507	\$367 299	\$463 879
Cost of Business as Usual (LCC)	\$383 790	\$383 790	\$383 790
Savings to Investment Ratio (SIR)	0,5	3,6	0,5
Internal Rate of Return (IRR)	0,0%	15,3%	0,0%
Levelized Cost of Energy (LCOE)	\$0,223	\$0,039	\$0,219
Greenhouse Gas Reduction (GHG)	18	4	19 mra

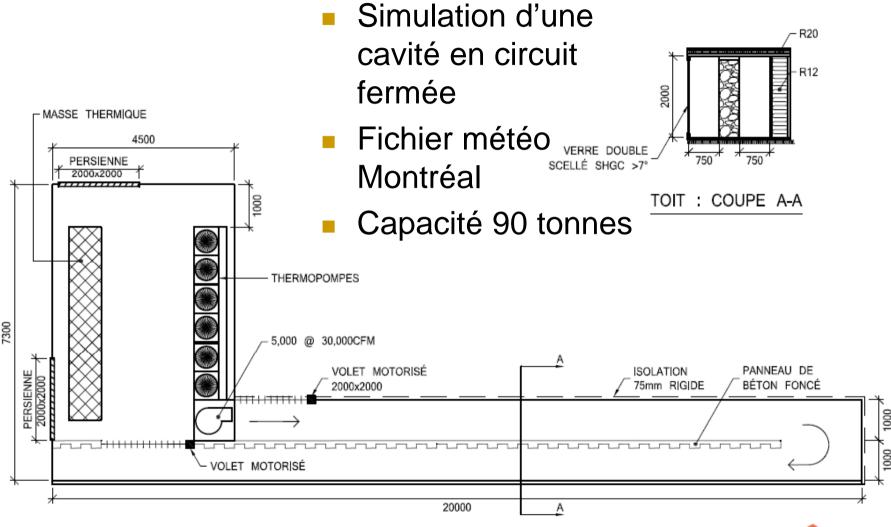
- Technologie des thermopompe permet 75% de capacité à -20 deg C
- Grande flexibilité grâce à la technologie du réfrigérant à débit variable
- Possibilité d' un coût plus faible que la géothermie

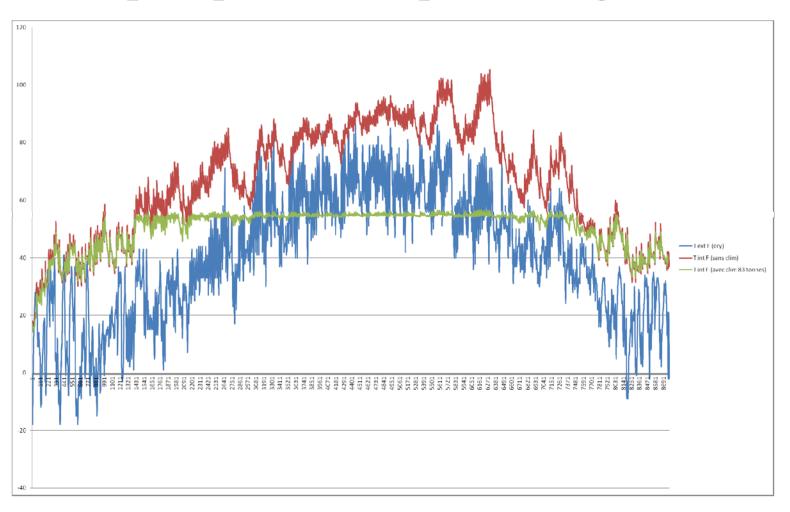

COP en fonction de la température extérieure

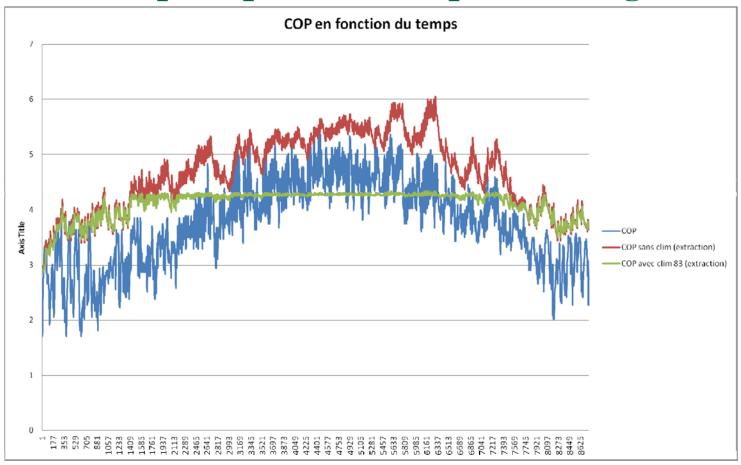



Circuit ouvert (mur solaire, BIPV)

 Circuit fermé (mur trombe, accumulation thermique)







Température à l'intérieure de la salle de mécanique

- COP moyen en période de chauffage: 4,04
- Coût des puits de géothermie 250,000 \$

Misty winter afternoon by Bert Kaufmann

