Rendez-vous Hydro-Québec 2005 12 décembre

Le 740, av. Bel-Air à Montréal un édifice gouvernemental exemplaire

740 Bel-Air

Programme

- Édifice multi-clients
 - Réserve Navale NCSM Donnaconna
 - Gendarmerie Royale du Canada (GRC)
 - Développement des Ressources Humaines du Canada (DRHC)
 - Agence des Douanes et du Revenu Canada (ADRC)
- Superficie de 15 700 m²
- Occupation de pointe d'environ 400 personnes
- Architectes regroupant « ABCP, architecture et urbanisme », « Beauchamps et Bourbeau architectes » ainsi que « Busby Perkins + Will »
- Ingénieurs en structure Saia Deslauriers Kadanoff Leconte Brisebois Blais
- Architectes paysagistes du « Groupe Rousseau-Lefebvre ».

Gendarmerie Royale du Canada

- Les besoins de ce client sont sujets à une constante mise à jour d'où une certaine flexibilité requise
- Dans les bureaux la nature des opérations requiert un nombre important de cloisons performantes au niveau de la transmission acoustique.
- Un stationnement maintenu à une température tout juste au-dessus du point de congélation.
- Un entrepôt en hauteur (7,37 m /24'-2")
- Une salle de tir intérieure
- La GRC a un besoin de salles de réunions; la grande partie de ce besoin est le jour. Elle partagera donc les classes avec la Marine, qui elle requiert ces salles le soir et le week-end.

Réserve Navale NCSM Donnaconna

- Plusieurs classes et un gymnase pour la formation et les exercices de la réserve.
- La réserve compte ± 250 personnes et leur occupation est le soir et le week-end.
- Trois mess qui seront non-fumeurs avec une cuisine commune.

DRHC et ADRC

 L'essentiel des espaces est pour de l'entreposage en hauteur (7,37 m /24'-2") avec quelques bureaux.

Défis

- Application des meilleures pratiques en matière de développement durable.
- Ces objectifs de développement durable visent à offrir aux usagers un environnement de qualité dans un bâtiment opérant de façon efficace, et ce, dans le respect des normes environnementales.
- Réduction de la consommation d'énergie de façon significative (de l'ordre de 40 %) par rapport à celle recommandée par le Code modèle national de l'énergie

Prix

- Ce projet a déjà retenu l'attention internationale lorsque dévoilé en 2002 à Oslo au concours annuel du « Green Building Challenge »
- Il s'est mérité, à l'automne 2003, le trophée Contech, catégorie développement durable
- Prix d'excellence de l'Institut canadien de construction en acier (Québec) en 2005
- Cet édifice constituera pour TPSGC un prototype de « bâtiment durable »
- Il sera l'un des premiers bâtiments certifiés LEED Or (Leadership in Energy and Environmental Design) au Québec.

Éclairage naturel

- Vitrage stratégiquement disposé afin de favoriser au maximum l'éclairage naturel
- Appareils d'éclairage efficaces du type « direct/indirect » contrôlés selon l'ensoleillement et selon l'occupation.
- Atrium, largement vitré le long de la façade sud
 - Par-soleil extérieur, constitué de larges lames d'aluminium inclinées sur deux axes
 - Favorise un ensoleillement maximum l'hiver tout en évitant l'accumulation de neige
 - Pour toute la saison estivale, cette même disposition de lames coupe le rayonnement solaire direct afin d'éviter une surchauffe de l'espace sans avoir

recours à un système de climatisation de capacité excessive.

Éclairage naturel (Hiver)

Éclairage naturel (Été)

Ventilation naturelle

- La ventilation naturelle est privilégiée.
- Les conditions trop froides en hiver à Montréal et trop humides en été requièrent que l'air introduit dans les locaux soit prétraité en ces périodes.
- Le système de ventilation est donc hybride
- Ventilation naturelle lorsque:
 - Plage de température et d'humidité adéquate
 - Sans pluie
 - Faible ou sans vent
- Fenêtres (persiennes et registres) motorisées:
 - Celles au sommet des puits de lumière et du gymnase
 - Celles de l'atrium
- Pas de supervision de l'ouverture des fenêtres à ouverture manuelle

Ventilation naturelle

740, Bel-Air

Ventilation mécanique

- Le débit du système de ventilation mécanique sera modulé en fonction des espaces occupés et également afin de maintenir le point de consigne de CO₂.
- Ce système ainsi qu'un second prenant en charge les besoins excédentaires de refroidissement (50 % par dalles radiantes)
- Les entrepôts seront ventilés par transfert d'air à partir des espaces occupés.
- Pour ce qui est de l'humidification, l'usage usuel de la vapeur sera remplacé par le giclage d'eau sur un média « évaporatif » dans le système de ventilation
- L'utilisation de cette technique d'humidification permet ainsi d'utiliser une source d'énergie produite plus efficacement (énergie récupérée et énergie produite par la géothermie) que celle qui aurait été requise pour l'humidification à la vapeur.

Ventilation mécanique (Bureaux)

Ventilation mécanique (Entrepôts)

Alimentation d'air via un plancher surélevé

- Cette technique d'alimentation d'air via l'entre plancher permet les avantages suivants :
- Les conduits d'air horizontaux sont réduits de beaucoup.
- Moins de restrictions au mouvement de l'air, donc réduction de la force motrice
- L'air frais est acheminé au niveau des usagers, donc meilleure efficacité de la ventilation et ainsi une meilleure qualité d'air intérieur.
- L'air stratifié permet également une meilleure efficacité thermique.
- Les réaménagements sont simplifiés

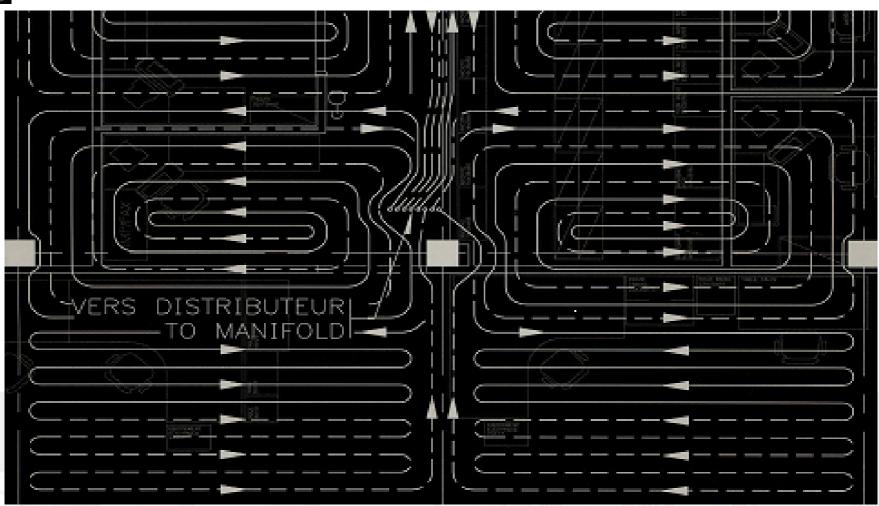
Alimentation d'air via un plancher surélevé

Fuites d'air du plancher surélevé par rapport à la pression maintenue

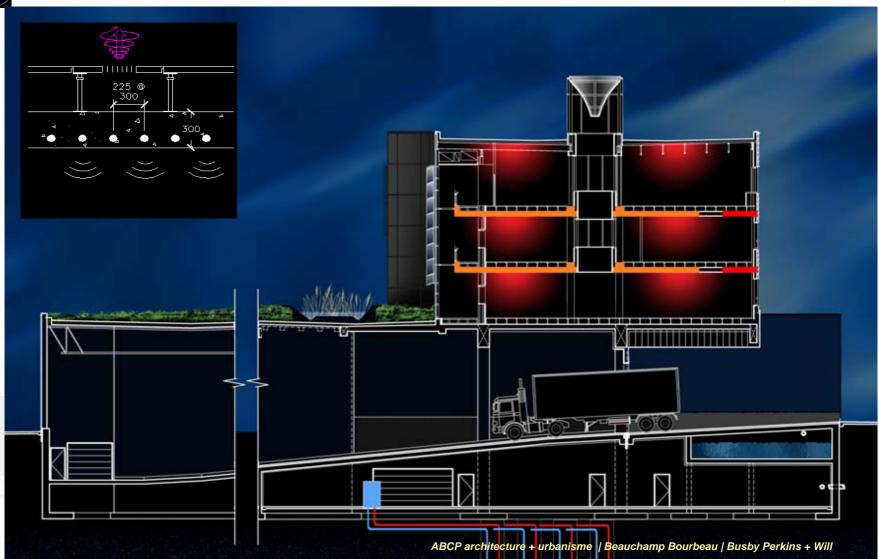
Variation de la température de l'air par le contact avec la dalle

- Distance de contact avec la dalle
- Vitesse d'entrée d'air dans le plancher surélevé
- Température de la dalle

- L'énergie motrice requise pour le transport de la chaleur ou du refroidissement est plus faible avec un liquide thermique;
- La masse de la dalle permet des économies d'énergie en accumulant de la chaleur le jour par exemple, pour répondre aux besoins de chauffage la nuit;
- La température du fluide thermique:
 - ± 17°C en refroidissement
 - ± 29°C en chauffage;
- L'inertie de la dalle permet également de réduire les demandes de pointe;
- L'échange thermique se fait par la dalle de plafond apparente;



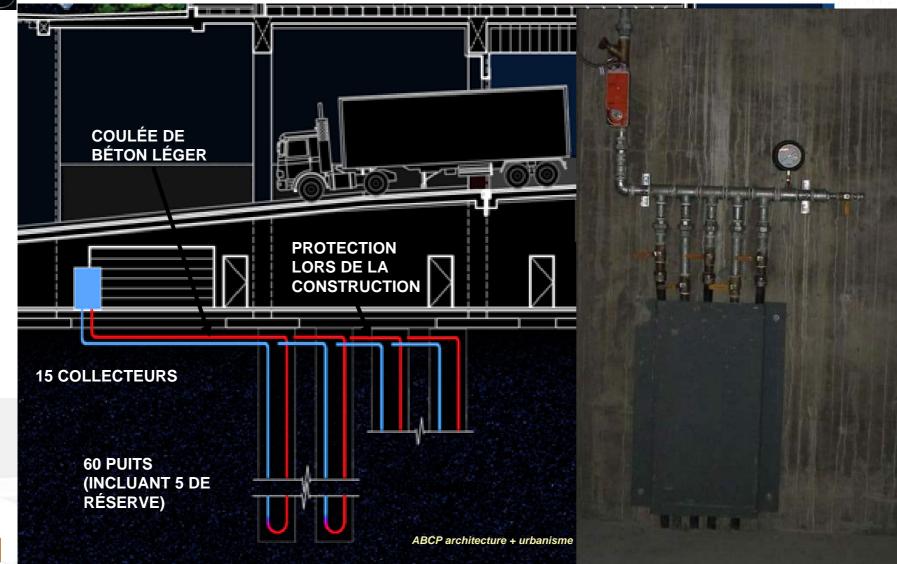
- Pour les zones au périmètre, façades contrôlée individuellement selon la température extérieure et également selon les prévisions de température à court terme. Ceci sera réalisé via un lien électronique avec le système d'Environnement Canada;
- Pour les zones internes, la température est maintenue constante toute l'année;
- Préoccupation de l'utilisation d'une surface « froide » pour le refroidissement est le risque de condensation;
- Bon contrôle de l'humidité de pièce requis;
- Choix judicieux de la température de la surface « froide » par rapport au point de rosée maximum de la pièce;
- Dans notre cas, le contrôle de l'humidité se fait par le système d'apport d'air frais.



Dalles radiantes (Hiver)

Dalles radiantes (Été)

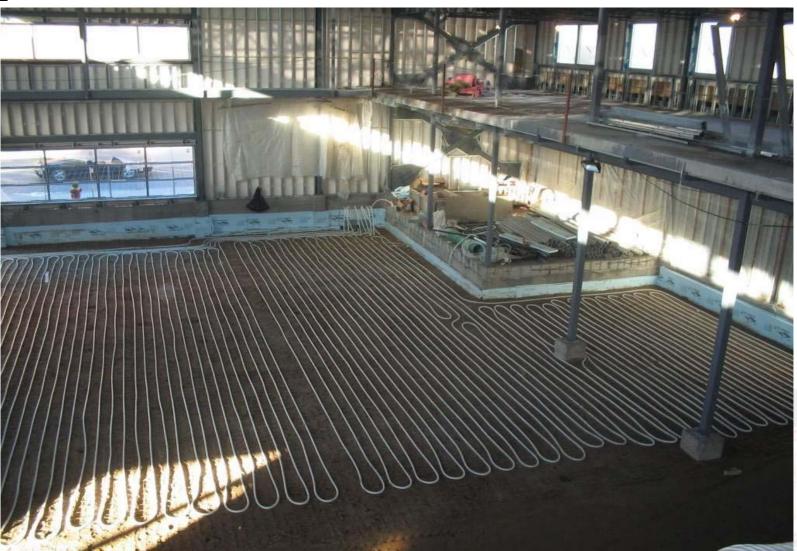
Géothermie



- Une tuyauterie à circuit fermé, alimentation et retour;
- Espace résiduel remplit d'un mélange cimentaire afin d'établir un bon contact avec le roc;
- Permet ainsi d'extraire l'énergie du sol en hiver et de le recharger en été;
- Énergie requise pour extraire la chaleur du sol est significativement inférieure à la chaleur extraite;
- Géothermique est plus efficace que « les pompes à chaleur à l'air »; température du sol plus élevée et plus uniforme, soit environ 10°C (50°F) tout au long de l'année;
- Coût de forage élevé;

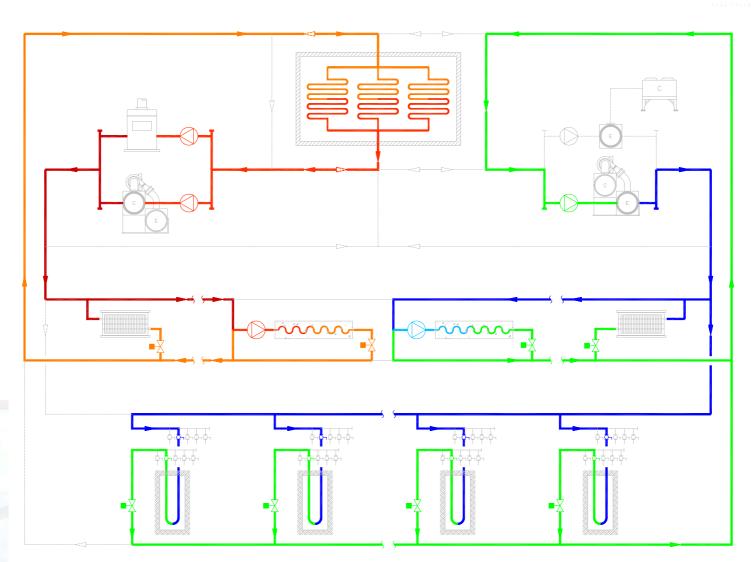
Géothermie (Sous le bâtiment)

- Permet d'accumuler de la chaleur l'hiver et de l'énergie de refroidissement en été;
- Le système de géothermie opère a un régime soutenu pour une grande période de temps durant la journée;
- Réduction de la capacité des équipements de géothermie ainsi que le nombre de puits (de 100 à 60);
- Réduction de la demande électrique de pointe et le coût de l'énergie électrique;
- Réserve thermique solide :
 - Circonstance spécifique à ce projet;
 - Grande quantité de sol contaminé devant être enlevé;
- Périmètre avec isolant rigide de 100 mm;
- Remblai de sable pour un bon contact avec la tuyauterie et un bonne diffusion de la chaleur dans la masse.



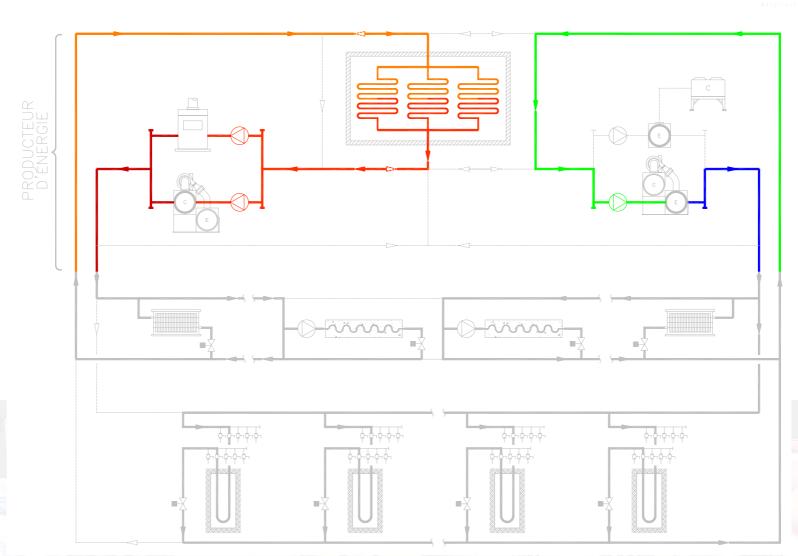
- Dimensions de 1500 m² x 750 mm de haut, soit 1125 m³
- Verticalement, réseaux de tubulure (25 mm Ø) sur 3 niveaux, niveaux espacés de 225 mm
- Horizontalement, réseaux de tubulure espacé de 225 mm installé sur treillis et groupés en 3 zones
- Chaque zone est munie de 2 transmetteurs de température pour un total de 6 transmetteurs
- Puissance de 211 kW, capacité d'emmagasinage de 2530 kW
- Durée de chargement de 8 heures
- Température de la réserve en chauffage, de 30 à 39°C
- Température de la réserve en refroidissement, de 4 à 12°C
- Débit d'eau glycolée, jusqu'à 1095 l/min

Centrale thermique

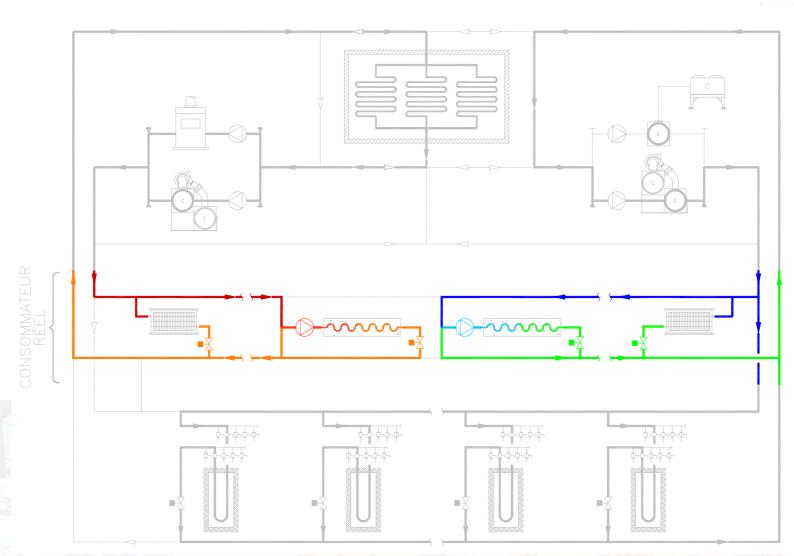


- Source principale d'énergie: l'échangeur géothermique, ses deux refroidisseurs (pompes à chaleur) ainsi que la réserve thermique;
- Afin de complémenter les besoins de chauffage lors de grands froids, deux chaudières au gaz naturel sont installées;
- Deux refroidisseurs conventionnels complémentent les besoins de refroidissement lors des périodes extrêmes l'été;
- Les réfrigérants utilisés dans les équipements de la centrale thermique contiennent des HFC respectueux de l'environnement.

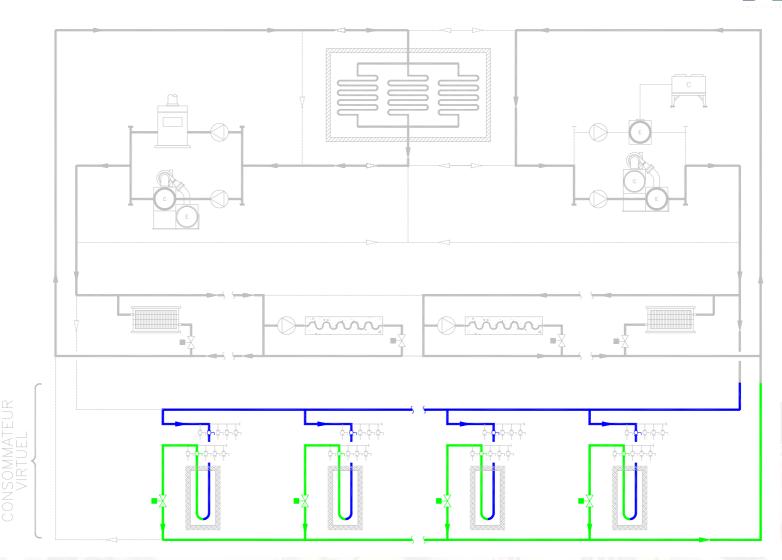
Centrale thermique

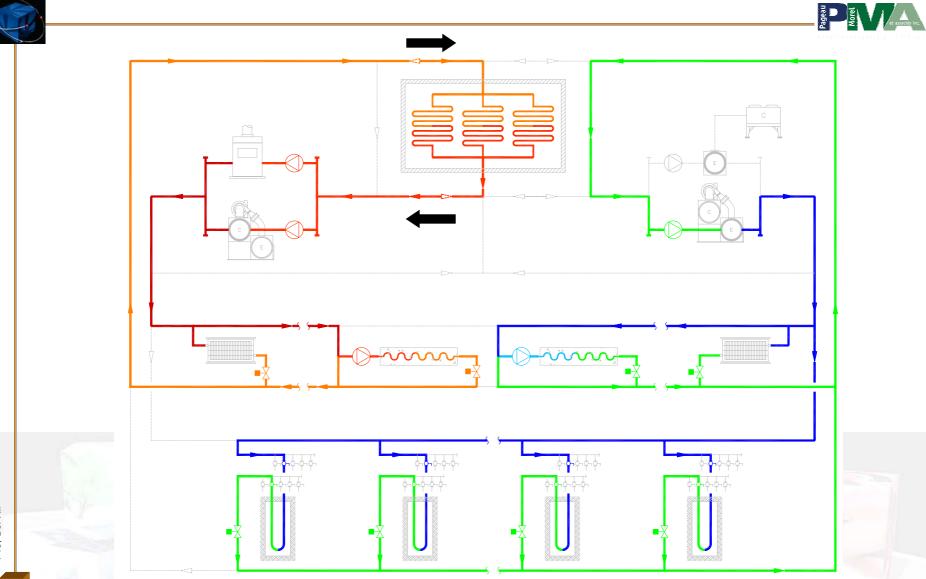


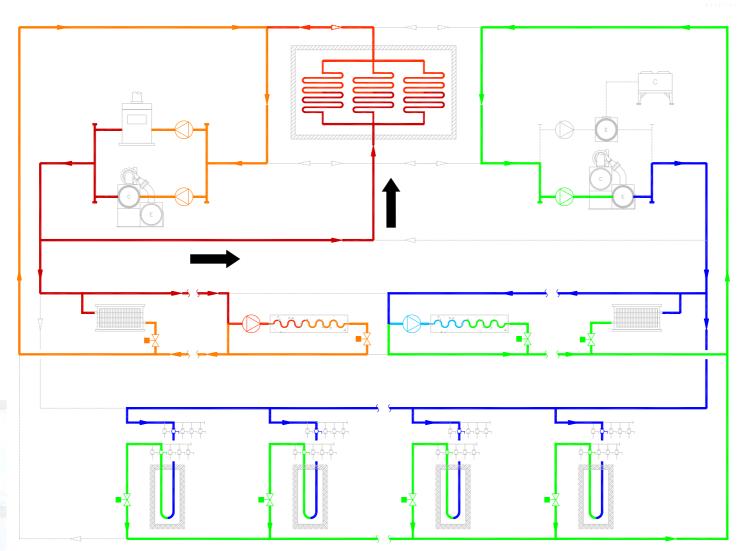
Producteur d'énergie

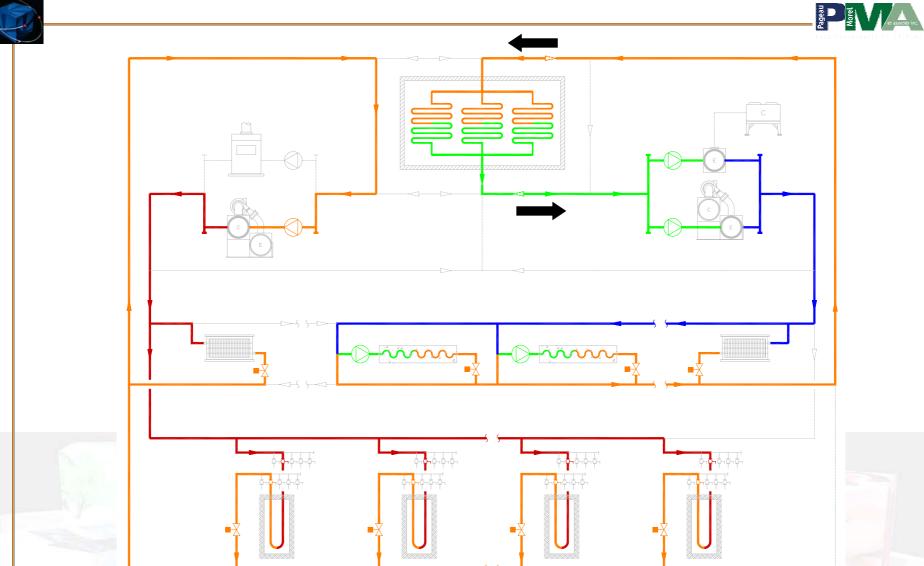


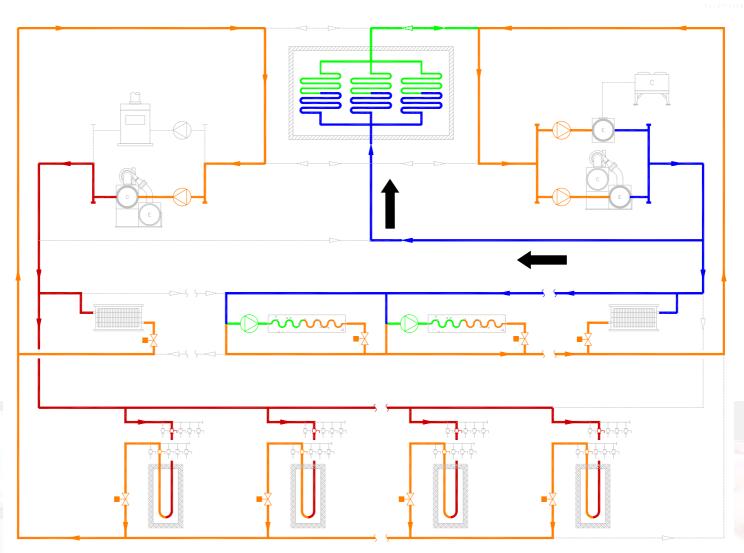
Consommateur réel




Consommateur virtuel (Géothermie)


Hiver (Jour)


Hiver (Nuit)

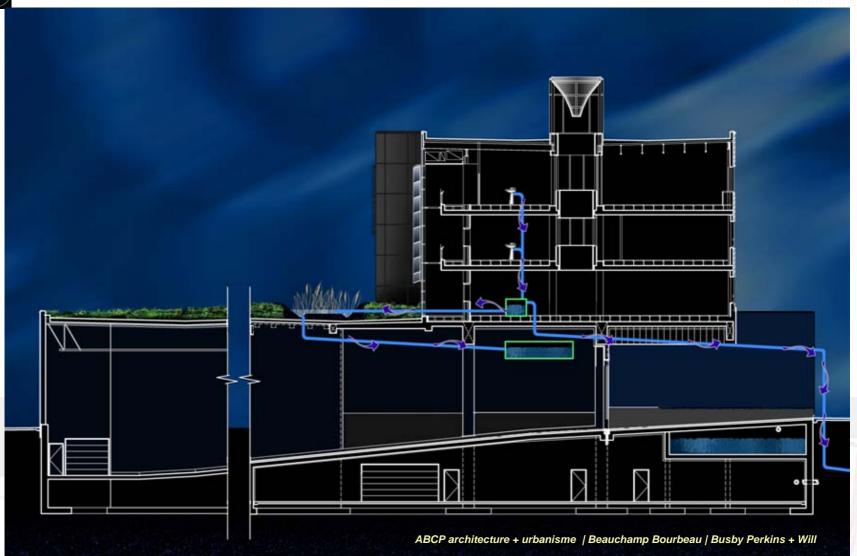

Été (Jour)

Été (Nuit)

Plomberie

- Au niveau de la réduction du débit d'eau usée, les mesures utilisées sont :
 - Un toit vert pour une partie importante de la toiture.
 - Un système de récupération des eaux de pluie et de ruissellement; incluant citernes, système de pompage, filtration et injection de chlore.
- Au niveau de la réduction de l'apport d'eau potable, les mesures utilisées sont :
 - L'utilisation de l'eau de pluie et de ruissellement récupérée pour fin d'alimentation des cabinets d'aisances.
 - L'installation de cabinets d'aisances à faible consommation d'eau.
 Ces derniers sont munis de système à double débit, 6 et 3 litres par cycle.
 - Le traitement des eaux grises (en provenance des lavabos) et la récupération a même le système de collecte des eaux de pluie.
 - Aucun système d'irrigation ni tour de refroidissement

Plomberie (Eau pluviale)



Plomberie (Eau grise)

Protection Incendie

- Le bâtiment est muni de deux entrées d'eau et tous les locaux du bâtiment sont protégés par des gicleurs.
- Les entrepôts de grande hauteur sont munis de gicleurs du type ESFR (Early Suppression Fast-Response) dont les orifices et le débit sont choisis en fonction de la nature et du mode d'entreposage des produits.

740 Bel-Air

Le 740 Bélair.

Merci de votre présence

